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Behavioral systems

Behavioral system Σ = (Zn,Rw,Bw )

System behavior Bw ⊂ {w : Zn → Rw} =: Aw

Behavior descriptions

R(σ1, . . . , σn)w = 0 B = kerR kernel

R(σ1, . . . , σn)w = M(σ1, . . . , σn) a latent variable

w = M(σ1, . . . , σn) a B = imM image! controllable behaviors

Latent variable elimination

R(σ1, . . . , σn)w = M(σ1, . . . , σn) a ←→ LRw = 0 L MLA of R

imM = ker L
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Behavioral systems

B = kerR is characterized by the set of equations satis�ed by all its

elements ∼ Mod(B)

Mod(B1 ∩ B2) = Mod(B1) + Mod(B2)
Mod(B1 + B2) = Mod(B1) ∩Mod(B2)

Autonomous-controllable decomposition

B = Bcontrollable + Bautonomous



Behavioral control by full interconnection
Control setting

Pz  plant  behavior to be controlled

Cz  full controller

Pz -� z
Cz

Pz ∩ Cz  plant-controller interconnection  controlled behavior



Behavioral control by full interconnection
Implementation

Dz - control objective - is implementable from Pz by full

interconnection if a full controller Cz exists such that

Pz ∩ Cz = Dz

Pz = kerH; Cz = kerK ; Dz = kerD ker

[
H

K

]
= kerD

Mod(Pz) + Mod(Cz) = Mod(Dz)

NSC for implementation

Dz ⊂ Pz
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Behavioral control by full interconnection
Regularity

The interconnection Pz ∩ Cz is regular if

Mod(Pz) ∩Mod(Cz) = {0}

Meaning: The plant and the controller share no (non-trivial) equations

Mod(Pz) + Mod(Cz) = Mod(Pz)⊕Mod(Cz)

Pz = kerH Cz = kerK rank

[
H

K

]
= rank H + rank K



Behavioral control by full interconnection
Regularity

The interconnection Pz ∩ Cz is regular if

Mod(Pz) ∩Mod(Cz) = {0}

Meaning: The plant and the controller share no (non-trivial) equations

Mod(Pz) + Mod(Cz) = Mod(Pz)⊕Mod(Cz)

Pz = kerH Cz = kerK rank

[
H

K

]
= rank H + rank K



Behavioral control by full interconnection
Regularity

The interconnection Pz ∩ Cz is regular if

Mod(Pz) ∩Mod(Cz) = {0}

Meaning: The plant and the controller share no (non-trivial) equations

Mod(Pz) + Mod(Cz) = Mod(Pz)⊕Mod(Cz)

Pz = kerH Cz = kerK rank

[
H

K

]
= rank H + rank K



Behavioral control by full interconnection
Regular implementation problem

Given: Pz = kerH and Dz = kerD

Find: Cz = kerK such that its interconnection with Pz is regular

and yields Dz

Mod(Dz) = Mod(Pz)⊕Mod(Cz)

ker

[
H

K

]
= kerD; rank

[
H

K

]
= rank H + rank K
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Behavioral control by full interconnection
Example

x(k + 1) = Ax(k) + Bu(k)
[
σI − A −B

]︸ ︷︷ ︸
H

[
x

u

]
= 0

u = Fx
[
−F I

]︸ ︷︷ ︸
K

[
x

u

]
= 0

z = (x , u)

Plant Hz = 0 Controller Kz = 0

Controlled behavior ker

[
H

K

]
= ker

[
σI − A −B
−F I

]
Regular interconnection
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Behavioral control by full interconnection
Solution of the regular implementation problem - 1D case

Theorem: Given Pz and Dz ⊂ Pz
The regular implementation problem is solvable

⇔ Pz/Dz is controllable

⇔ Pz = Pcontrollable
z +Dz .

Controller construction

Dz = kerD; Pz = kerMD; D and M full row rank

Pz/Dz w kerM

∃ N such that

[
M

N

]
is unimodular, i.e., ker

[
M

N

]
= {0}

Cz = kerND is a regular controller
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Behavioral control by full interconnection
Solution of the regular implementation problem - nD case

Theorem: Given Pz and Dz ⊂ Pz
The regular implementation problem is solvable

⇔ Pz/Dz is a direct summand of Az/Dz

⇒ Pz = Pcontrollable
z +Dz .

Dz = kerD; Pz = kerMD;

Pz/Dz w ker

[
M

E

]
and Az/Dz w ker E with E MLA of D

ker

[
M

E

]
⊕ kerK︸ ︷︷ ︸

regular controller

= ker E

(Lomadze-Zerz; Bisiacco-Valcher)
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Behavioral control by partial interconnection
Control setting

z = (w , c): c - control variables; w - variables to be controlled

P(w ,c)  plant Cc  (partial) controller

� - P(w ,c)
-� cw

Cc

P(w ,c) ∩ C∗(w ,c)  plant-controller interconnection  full controlled

behavior



Behavioral control by partial interconnection
Implementation

Dw - control objective - is implementable from P(w ,c) by partial

interconnection if a (partial) controller Cc exists such that

Πw (P(w ,c) ∩ C∗(w ,c)) = Dw

P(w ,c) : Rw = Mc ; Dw : Dw = 0; Cc : Kc = 0[
R

0

]
w =

[
M

K

]
c → elimination of c → Dw = 0

L MLA of

[
M

K

]
L

[
R

0

]
w = 0 ⇐⇒ Dw = 0
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Behavioral control by partial interconnection
Implementation

NSC for implementation

P(w ,0) :=
{
w | (w , 0) ∈ P(w ,c)

}
hidden w -behavior;

Pw := Πw (P(w ,c))

Dw implementable from P(w ,c) ⇐⇒ P(w ,0) ⊂ Dw ⊂ Pw

P(w ,c) R w = M c

Pw GFR w = 0 GF MLA of M

Dw FR w = 0

P(w ,0) R w = 0
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Behavioral control by partial interconnection
Regularity

The partial interconnection of P(w ,c) and Cc is regular if

Mod(P(w ,c)) ∩Mod(C∗(w ,c)) = {0}

rank

[
R −M
0 K

]
= rank

[
R −M

]
+ rank

[
0 K

]
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Behavioral control by partial interconnection
Regular implementation problem

Given: P(w ,c) = ker[R −M] and Dw = kerD

Find: Cc = kerK such that its (partial) interconnection with P(w ,c)

is regular and yields Dw

ker L

[
R

0

]
= kerD for L MLA of

[
M

K

]
rank

[
R −M
0 K

]
= rank

[
R −M

]
+ rank

[
0 K

]

More di�cult than full interconnection!
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Behavioral control by partial interconnection
Example

{
x(k + 1) = Ax(k) + Bu(k)
y(k) = Cx(k) + Du(k)

[
σI − A
C

]
︸ ︷︷ ︸

R

x︸︷︷︸
w

=

[
B 0
−D I

]
︸ ︷︷ ︸

M

[
u

y

]
︸ ︷︷ ︸

c

y = Fu
[
−I F

]︸ ︷︷ ︸
K

[
u

y

]
= 0 partial controller

Plant-controller interconnection

 σI − A −B 0
C −D I

0 −I F

 x

u

y

 = 0

regular if (I − FD) nonsingular

Controlled behavior −→ corresponding x-behavior
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Behavioral control by partial interconnection
Solution of the regular implementation problem - 1D case

Theorem [Belur-Trentelman, 2002]

Dw implementable from P(w ,c) by regular partial interconnection

⇐⇒
P(w ,0) ⊂ Dw and

Dw implementable from Pw by regular full interconnection

Controller construction

P(w ,c) R w = M c

Pw GFR w = 0

Dw FR w = 0

Regular w-controller Cw KFR w = 0

Regular partial controller Cc KFM c = 0
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Dw FR w = 0

Regular w-controller Cw KFR w = 0

Regular partial controller Cc KFM c = 0
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;
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Example

P(w ,c)  w =

[
σ2 − 1

1− σ1

]
c Pw = ker[σ1 − 1 σ2 − 1]

Dw = {0}  w = 0

Cc = ker 1  c = 0  regular controller

Dw is regularly implementable from P(w ,c) by partial control

However Dw is not regularly implementable from Pw by full control
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Behavioral control by partial interconnection
Solution of the regular implementation problem - nD case

Fortunately...

The partial implementation problem can still be reformulated as a

full implementation problem

Plant  P(w ,c)  Rw = Mc  elimination of w  Pc
Control objective  Dw  Dw = 0

Associated canonical controller

Ccan
c

:= {c | ∃ w ∈ Dw s.t. (w , c) ∈ P(w ,c)} = Πc(D∗
(w ,c) ∩ P(w ,c)}{

Dw = 0

Rw = Mc
 elimination of w  K can

c c = 0
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Behavioral control by partial interconnection
Solution of the regular implementation problem - nD case

Theorem [Rocha,2005]

Let Dw be implementable from P(w ,c) by partial interconnection.

Then

Dw is regularly implementable ⇔ Ccanc is regularly implementable

from Pc by full interconnection

Controller construction

Cc regular controller that implements Ccanc from Pc by full

interconnection

⇒
Cc regular controller that implements Dw from P(w ,c) by partial

interconnection

But: Full and partial implementation problems have di�erent control objectives...
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Behavioral control by partial interconnection
Example

P(w ,c)  w =

[
σ2 − 1

1− σ1

]
c ; Pc = ker 0  i.e. c is free

Dw = {0}  w = 0

Ccanc = ker

[
σ2 − 1

1− σ1

]
Cc = Ccanc regularly implements Ccanc from Pc by full control and

hence regularly implements Dw from P(w ,c) (by partial control)



Summary
nD control

Full interconnection Partial interconnection

Plant Pz P(w,c)

Control objective Dz Dw

Implementation Dz ⊂ Pz P(w,0) ⊂ Dw ⊂ Pw
Regularity Pz/Dz direct summand Ccanc reg. impl. from

of A
z

/Dz Pc by full intercon.

Regular controller Cz ' compl. summand Cc regular c-controller



Stability of behavioral systems

1D case

Bw is stable  for all w ∈ B : lim
k→+∞

w(k) = 0

nD case

Need to de�ne stability directions

↓
Stability cone S
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De�nition

Our stability notion

Bw is stable

For all w ∈ Bw and for all elements
−→
d in S : lim

k→+∞
w(k
−→
d ) = 0

Discrete version of de�nition by Pillai-Shankar

Other stability notions

Valcher - uses stability cones, but only some trajectories are

required to vanish asymptotically

Oberst-Scheicher - consider an input-output framework
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Stability of behavioral systems
Characterization

Remark

Bw = kerR(σ1, . . . , σn) stable ⇒ Bw �nite dimensional (strongly autonomous)

⇔ R(s1, . . . , sn) has fcr and �nite # of zeros

Theorem

Bw = kerR(σ1, . . . , σn) stable ⇔ R(s1, . . . , sn) has fcr, �nite # of zeros

(d1, . . . , dn) ∈ S; (λ1, . . . , λn) zero of R∣∣∣λd11 · · · λdnn ∣∣∣ < 1



Stabilization by full interconnection
Problem statement

Given: a plant Pw

Find: a regular controller Cw such that

Pw ∩ Cw is a regular interconnection Pw ∩reg Cw
Pw ∩ Cw is stable

If this problem is solvable,

Pw is said to be stabilizable (by full control).
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Stabilization by full interconnection
1D case [Willems]

Theorem

Pw stabilizable (by full control)

⇐⇒
Pw = Pcontrollable

w ⊕ Pautonomous
w with Pautonomous

w stable

Cf classical results for state-space systems.

Corollary

Pw = kerR stabilizable (by full control)

⇐⇒
R = QRcontrollable with

kerRcontrollable = Pcontrollable
w

kerQ stable



Stabilization by full interconnection
1D case [Willems]

Theorem

Pw stabilizable (by full control)

⇐⇒
Pw = Pcontrollable

w ⊕ Pautonomous
w with Pautonomous

w stable

Cf classical results for state-space systems.

Corollary

Pw = kerR stabilizable (by full control)

⇐⇒
R = QRcontrollable with

kerRcontrollable = Pcontrollable
w

kerQ stable



Stabilization by full interconnection
1D case [Willems]

Theorem

Pw stabilizable (by full control)

⇐⇒
Pw = Pcontrollable

w ⊕ Pautonomous
w with Pautonomous

w stable

Cf classical results for state-space systems.

Corollary

Pw = kerR stabilizable (by full control)

⇐⇒
R = QRcontrollable with

kerRcontrollable = Pcontrollable
w

kerQ stable



Stabilization by full interconnection
nD case

Pw stabilizable ⇒ A �nite dimensional (FD) behavior is

implementable from Pw by regular interconnection

This imposes some restrictions on the controllable part of Pw ...

Theorem

FD behavior regularly ⇒ Pcontrollable
w direct summand of Aw

implementable from Pw m
Pcontrollable
w recti�able

⇓
Pw =Pcontrollable

w ⊕ Pautonomous
w



Stabilization by full interconnection
nD case

Pw stabilizable ⇒ A �nite dimensional (FD) behavior is

implementable from Pw by regular interconnection

This imposes some restrictions on the controllable part of Pw ...

Theorem

FD behavior regularly ⇒ Pcontrollable
w direct summand of Aw

implementable from Pw m
Pcontrollable
w recti�able

⇓
Pw =Pcontrollable

w ⊕ Pautonomous
w



Stabilization by full interconnection
nD case

Pw stabilizable ⇒ A �nite dimensional (FD) behavior is

implementable from Pw by regular interconnection

This imposes some restrictions on the controllable part of Pw ...

Theorem

FD behavior regularly ⇒ Pcontrollable
w direct summand of Aw

implementable from Pw m
Pcontrollable
w recti�able

⇓
Pw =Pcontrollable

w ⊕ Pautonomous
w



Stabilization by full interconnection
nD case

Theorem

Pw stabilizable ⇔ Pw =Pcontrollable
w ⊕ Pautonomous

w

by full reg. int. with Pautonomous
w stable

Same as 1D!

Pw = kerR ; R = QRcontrollable with kerQ stable



Stabilization by full interconnection
nD case

Theorem

Pw stabilizable ⇔ Pw =Pcontrollable
w ⊕ Pautonomous

w

by full reg. int. with Pautonomous
w stable

Same as 1D!

Pw = kerR ; R = QRcontrollable with kerQ stable



Stabilization by full interconnection
nD case

Theorem

Pw stabilizable ⇔ Pw =Pcontrollable
w ⊕ Pautonomous

w

by full reg. int. with Pautonomous
w stable

Same as 1D!

Pw = kerR ; R = QRcontrollable with kerQ stable



Stabilization by partial interconnection

P(w ,c) stabilizable by partial interconnection

∃ controller Cc such that Πw (P(w ,c) ∩reg C*(w ,c)) is stable

1D case

Theorem [Belur-Trentelman]

P(w ,c) stabilizable ⇔ P(w ,0) stable

Pw stabilizable (by full interconnection!)

nD case

Also

P(w ,c) stabilizable ⇒P(w ,0) stable

But...
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Stabilization by partial interconnection

The corresponding full interconnection problem is stated in terms

the control variables c

Proposition

P(w,c) ! Rw = Mc ⇔ P̃c := Pc/P(0,c) stabilizable by full interconnection

stabilizable by with a controller C̃c s.t. Mod(P̃c ) ∩Mod(C̃c ) = Mod(imM)

regular partial intercon. ⇓
∃ Cc : P̃c ∩ Cc is stable;

P̃c + Cc = imM

⇓
P̃c is an ⇐ ∃ Cc : P̃c ∩ Cc FD

almost direct P̃c + Cc = imM

summand of

imM

↓
Valcher, Napp,Oberst To be continued...
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Our hope is...

to obtain nice conditions on P̃c that enable to get better (more

explicit) stabilization conditions.

Thank you!
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